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Introduction

Human enzyme posttranslational modifications are important features of numerous diseases. Lipid peroxidation product 
4-hydroxynonenal (4-HNE) is able to functionally modify specific proteins with implications for various diseases. Human 
monooxygenase CYP4F11 enzyme is involved mainly in lipid metabolism and xenobiotic degradation. CYP4F11 modification by 
4-HNE was shown previously in malaria model, where phagocytosed malarial pigment hemozoin produced non-enzymatically 4-HNE 
in human monocytes. Enzyme activity was shown to be inhibited [1] but the structural changes were not studied yet. 

The aim of the work is to investigate the modifications, elicited by 4-HNE in human CYP4F11 enzyme applying computational 
modelling.

Methods

The predicted structure of the CYP4F11 protein, generated by AlphaFold2 [2], was utilized. Specific residues (C45, C260, H261, 
H347, C354, K451) were manually modified by Michael addition with 9-carbon aldehyde 4-HNE, based on previously identified 
modification sites determined through mass spectrometry [1].

Subsequently, the modified structure was minimized using the Universal force field (UFF) [3] with the help of cheminformatics 
software RDKit v. 2023.09.1. The CYP4F11 unmodified AlphaFold2 structure was also minimized for a fair comparison. The 
secondary structure fractions were calculated using the dictionary of protein secondary structure (DSSP) v. 4.0.4. [4]. 

Results

Independently, the FTIR-spectrometry experiment indicates a decrease in the amount of alpha-phase by 0.23% and an increase in 
beta-phase by 2.12% in 4-HNE modified CYP4F11, in accordance with our computational analysis (Fig. 1).
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Figure 1. Predicted changes in the modified structure (purple) relative to the original (green). The modification at CYS45 induces changes in 
the secondary structure at positions 48-50 from helix to coil (left); The modifications at CYS260 and HIS261 induce changes in the secondary 
structure at positions 248-249, 251-253, and 259-260 from helix to coil (center); The modification at CYS354 induces changes in the secondary 
structure at positions 360-361 from helix to coil and at positions  353-354, 380-381 from coil to helix (right). The red thin lines indicate helix, 
green and gray - coil. The 4-HNE is shown in purple, conjugated with CYS45, CYS260, HIS261, and CYS354.
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