QUANTUM CHEMICAL STUDY OF STRUCTURAL CHANGES OF SOME TRIAZENES, AZO- COMPOUNDS I. M. Maga

National Aviation University, 15 Ave. Lubomir Husar, Kyiv, 03058, Ukraine. ivanm.maga@gmail.com

Balancing geometry of triazenes molecules $R-C_6H_4-NH-N=N-C_6H_4-NO_2$ (where R - H, p-CH₃, o-CH₃, m-CH₃, p-Cl, and p-Br) and their isomeric forms $R-C_6H_4-N=N-NH-C_6H_4-NO_2$ were studied in this work by non-empiric method of Harty-Fock-Ruthan with use of program GAMESS and basic set 3-21G**. It was estimated that izo-form in gas phase is more advantageous energetically

Triazenes and their iso-forms in vacuum

Table. Total energies of triazene molecules studied (a.u.)

Structure	Initial form	Iso-form
H-compound	-822.96122	-822.96521
p-CH ₃ -substitution	-861.79117	-861.79605
m-CH ₃ -substitution	-861.79198	-861.79565
o-CH ₃ -substitution	-861.78506	-861.79163
p-Cl-substitution	-1279.77631	-1279.78007
p-Br-substitution	-3382.64372	-3382.64747
p-NO ₂ -substitution	-1025.24972	

Conclusions

Thus, the results of quantum-chemical calculations support the proposed mechanism of rediazotating of triazenes and describe the observed influence of nature of the solvents and substitutives in azo-component. Our results suggest, the process of interaction of diazonium cathion with triazene should be regarded by taking into account the interaction of the solvent with both reactants.