Quantum-Chemical Study of Conformational Properties of Propanol

M. Onuk¹, I. Doroshenko¹, D. Vashchuk¹, Ye. Hrabovskyi¹ ¹Physics Faculty, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine **Corresponding author: MartaOn379@gmail.com*

Molecules of monohydric alcohols with more than one carbon atom can be found in different conformations, which are formed as a result of rotation of atoms around chemical bonds. In the case of n-propanol (Fig.1), the molecule of which has two structural dihedrals, nine stable configurations exist: one plane structure and four pairs of enantiomers (or mirror-image pairs). Since enantiomers have similar energy and optical properties, the difference between them is usually neglected. As a rule, propanol conformers are designated by a symbolic title using a generally accepted scheme of dihedral angles CCCO+CCOH via big + small letters for trans- (T, t), gauche- (G, g) and gauche'- (G', g') conformers.

Table 1

Quantum-chemical calculations of optimal geometry, dipole moments, energy of five propanol conformers were made at DFT: B3LYP/cc-pVTZ level of theory.

Fig.1. Structural formula

n-propanol (CH₂-CH₃-CH₃-OH).

Conformer	Tt	Tg	Gt	Gg'	Gg
Dipole moment, D	1,43	1,64	1,47	1,61	1,59
Energy E, hartree	-194,433735	-194,433884	-194,433833	-194,433699	-194,433958
Energy E, kJ/mol	-510 582,988	-510 583,379	-510 583,245	-510 582,893	-510 583,574
ΔE, kJ/mol	0,586	0,195	0,329	0,681	0

