

Synthesis, Linear and Nonlinear Optical Response of New Azo-Benzoxazoles

V.I. Pobigailenko^a, V. M. Ovdenko^{a, b}, D. O. Komarenko^b, V. V. Multian^b, V. Ya. Gayvoronsky^b

^a Chem. Dept., Nat. Taras Shevchenko University of Kyiv, Volodymyrska, 62a, 01060 Kyiv, Ukraine ^bInstitute of Physics NASU, Nauky Ave., 46, 03028 Kyiv, Ukraine E-mail: <u>vlad@iop.kiev.ua,</u> <u>valeryovdenko@gmail.com</u>

A series of azo compounds containing a heterocyclic moiety was obtained. The effect of the benzoxazole ring on both the rate of photoinduced isomerization and the nonlinear optical responses in thin films (1% in PMMA wt.) was investigated under CW laser excitation at 532 nm.

1.For SA-Azo-NO₂ polymer composite containing aldehyde group increase in concentration from 1% to 2% promotes switching from self-defocusing ($\Delta n < 0$) to self-focusing modes ($\Delta n > 0$). It can be attributed to aldehyde group intermolecular nonspecific interactions.

2. The same concentration increase for Azo-Benz-NO₂ one provides rise of the self-defocusing effect manifestation ($\operatorname{Re}(\chi^{(3)}) = -1.8 \ 10^{-3} \, \text{esu}$) that can be associated with cooperative phenomena.

3. UV irradiation with mercury lamp causes following changes in NLO refractive response. In SA-Azo-NO₂ polymer composite 1min exposition produces no almost changes in photoinduced on-axis transmittance, whereas 10 min – provides self-defocusing effect manifestation. On the contrary, for Azo-Benz-NO₂ 1 minute of irradiation promotes an efficient self-defocusing effect due to more complex structure of benzoxazole-containing sample.