Boron - Oxygen Interaction in Heat Treated Silicon

A. V. Duvanskyi, M. G. Sosnin, L. I. Khirunenko

Institute of Physics, National Academy of Sciences of Ukraine, Prospekt Nauky 46, 03028 Kyiv, Ukraine

Summary

The influence of heat treatment at 400 °C on the spectrum of boron intracenter transitions in silicon using IR absorption spectroscopy is investigated. In the transitions region from the ground $1\Gamma_8^+$ state associated with the $p_{3/2}$ valence band of Si to the odd-parity excited states of boron, a new absorption line with its maximum at 261.3 cm⁻¹ is observed in the thermally treated boron-doped Cz-Si. Oxygen is a component of defect that is responsible for the detected absorption line. Perturbation of boron atoms due to the inhomogeneous stress effect from neighboring oxygen atoms results in a frequency shift in the main boron transition. The defect associated with 261.3 cm⁻¹ line is also observed in as-grown silicon. The defect disappears during annealing at 550 °C. The estimated concentration of the detected defect for the as-grown and heat treated at 400 °C during 10 h Cz-Si:B sample ($N_{\rm B}$ =2.2×10¹⁶ cm⁻³; $N_{\rm O}$ =1.1×10¹⁸ cm⁻³) are 7.8×10¹² cm⁻³ and 1.7×10¹⁴ cm⁻³, respectively. The binding energy of the 1 Γ_8 ⁺ ground state for revealed defect is 43.93 meV.

The acquired data are essential for understanding the influence of boron-oxygen-related defects on the electrical and optical properties of silicon and photovoltaic cells made on its base.

Experimental

The samples of boron-doped Si used in the study were grown by the Czochralski (Cz-Si:B) and float-zone (Fz-Si:B) methods. The concentration of boron ($N_{\rm B}$) was 1×10¹⁶ and 2.2×10¹⁶ cm⁻³ for Cz-Si:B samples and 2.6×10¹⁶ cm⁻³ for Fz-Si:B. The content of oxygen (N_{o}) was changed in samples in the range (0.43÷1.1)×10¹⁸ cm⁻³. The carbon concentration was varied in the interval (0.8÷1.2)×10¹⁷ cm⁻³. To study the interaction between boron and oxygen atoms the heat treatments of samples were carried out at 400 °C during 10 h. The absorption spectra of the samples were studied with the use of a Bruker IFS-113v Fourier transform infrared spectrometer. The measurements were carried out at 10 K with a resolution of 0.2–1 cm⁻¹.

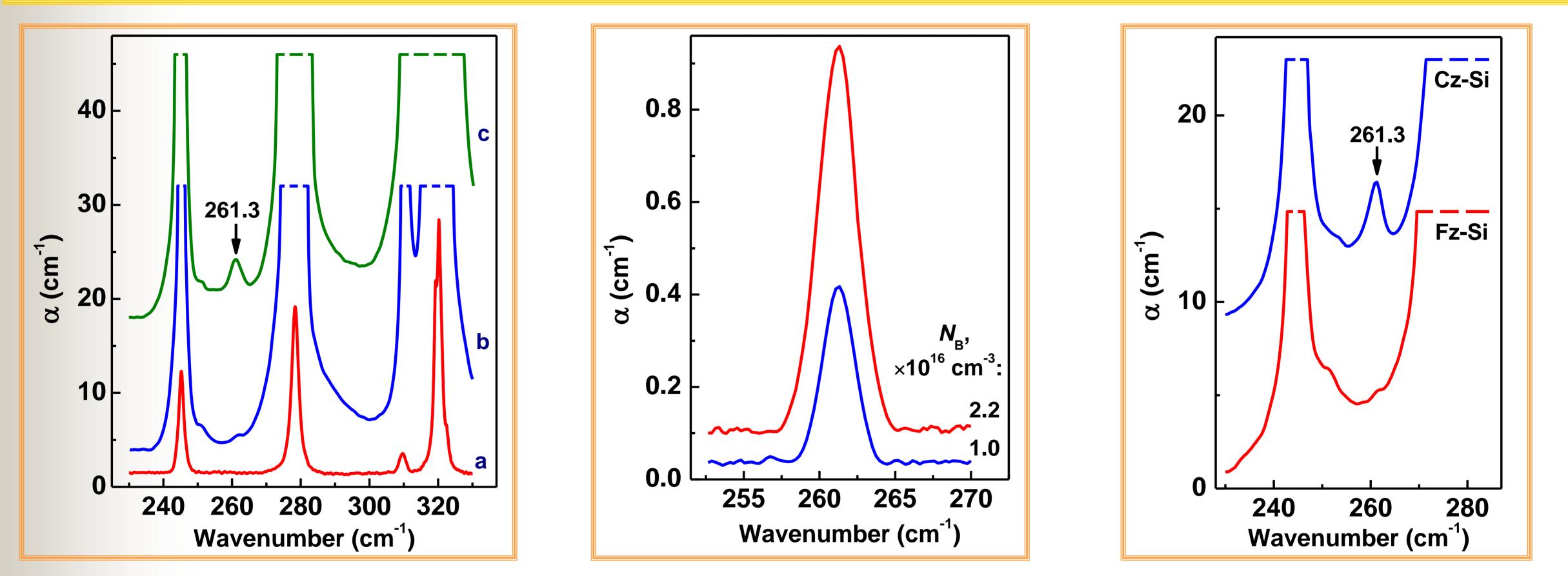
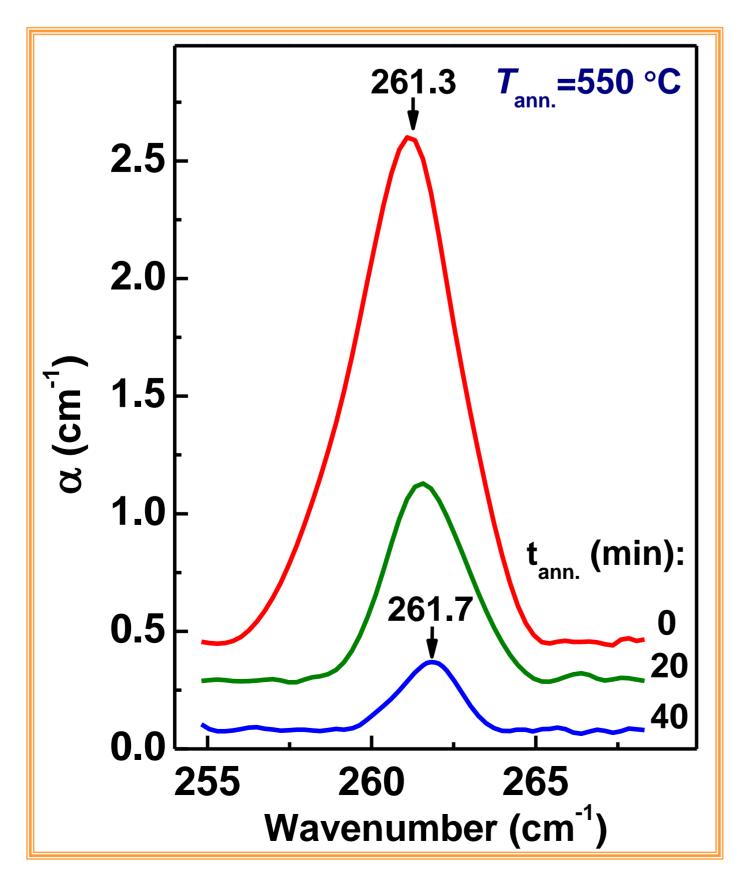



Fig. 1. Infrared absorption spectra measured at **10 K** for the Cz-Si:B. $N_{\rm B}$, ×10¹⁶ cm⁻³: a – 0.04; **b**, **c** - 2.2. N_0 , ×10¹⁸ cm⁻³: a - 1; b, c - 1.1. **Spectrum (c) corresponds to the sample heat** treated at 400 °C for 10 h. The spectra are shifted along the vertical axis for clarity.

Fig. 2. Fragments of the absorption spectra for the Cz-Si:B samples with comparable oxygen concentrations ($N_0 \sim 4.5 \times 10^{17}$ cm⁻³) and different boron contents. Samples heat treated at 400 °C for 10 h. The spectra are baseline corrected.

Fig. 3. Fragments of the absorption spectra for Fz-Si:B ($N_{\rm B}$ =2.6×10¹⁶ cm⁻³; $N_{\rm O}$ = $\leq 3 \times 10^{15}$ cm⁻³) and Cz-Si:B $(N_{\rm B}=2.2\times10^{16} \text{ cm}^{-3}; N_{\rm O}=1.08\times10^{18} \text{ cm}^{-3})$ samples heat treated at 400 °C for 10 h.

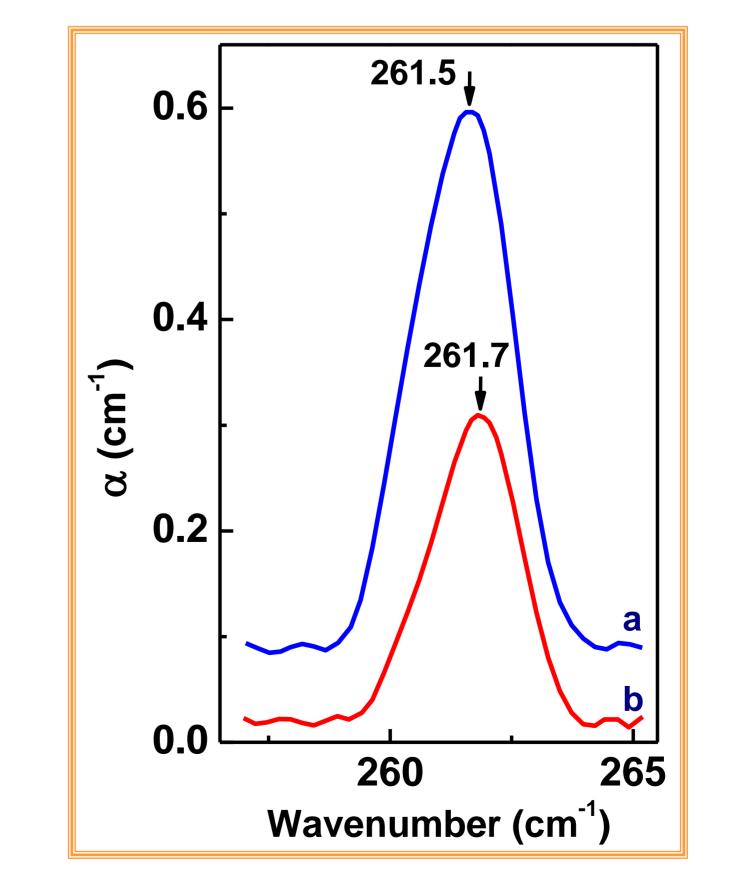


Fig. 4. Fragments of the absorption spectra for borondoped Cz-Si sample heat treated at 400 °C for 10 h and subjected to the subsequent annealing at 550 °C. $N_{\rm B} = 2.2 \times 10^{16} \text{ cm}^{-3}$. $N_{\rm O} = 9.3 \times 10^{17} \text{ cm}^{-3}$.

Fig. 5. Fragments of the absorption spectrum for as-grown Cz-Si:B sample (a) and after its successive heat treatments at 400 and 550 °C (b). $N_{\rm B} = 2.2 \times 10^{16} \text{ cm}^{-3}$. $N_{\rm O} = 1.02 \times 10^{18} \text{ cm}^{-3}$.